Осевая симметрия в живой и неживой природе. Симметрия в природе, искусстве и литературе

ВВЕДЕНИЕ: Проблеме симметрии посвящена поистине необозримая литература. Отучебников и научных монографий до произведений, апеллирующих не столько к чертежу и формуле, сколько к художественному образу, и сочетающих в себе научную достоверность с литературной отточенностью. В "Кратком Оксфордском словаре" симметрия определяется как "красота,обусловленная пропорциональностью частей тела или любого целого,равновесием, подобием, гармонией, согласованностью" (сам термин "симметрия" по-гречески означает "соразмерность", которую древние философы понимали как частный случай гармонии - согласования частей в рамках целого) . Симметрия является одной из наиболее фундаментальных и одной из наиболее общих закономерностей мироздания: неживой, живой природы и общества. С симметрией мы встречаемся всюду. Понятие симметрии проходит через всю многовековую историю человеческого творчества. Оно встречается уже у истоков человеческого знания; его широко используют все без исключения направления современной науки. Что же такое симметрия? Почему симметрия буквально пронизывает весь окружающий нас мир? Существуют, в принципе, две группы симметрий. К первой группе относится симметрия положений, форм, структур. Это та симметрия, которую можно непосредственно видеть. Она может быть названа геометрической симметрией. Вторая группа характеризует симметрию физических явлений и законов природы. Эта симметрия лежит в самой основе естественнонаучной картины мира: ее можно назвать физической симметрией. На протяжении тысячелетий в ходе общественной практики и познания законов объективной действительности человечество накопило многочисленные данные, свидетельствующие о наличии в окружающем мире двух тенденций: с одной стороны, к строгой упорядоченности, гармонии, а с другой - к их нарушению. Люди давно обратили внимание на правильность формы кристаллов, цветов, пчелиных сот и других естественных объектов и воспроизводили эту пропорциональность в произведениях искусства, в создаваемых ими предметах, через понятие симметрии. «Симметрия, - пишет известный ученый Дж. Ньюмен, - устанавливает забавное и удивительное родство между предметами, явлениями и теориями, внешне, казалось бы, ничем не связанными: земным магнетизмом, женской вуалью, поляризованным светом, естественным отбором, теорией групп, инвариантами и преобразованиями, рабочими привычками пчел в улье, строением пространства, рисунками ваз, квантовой физикой, лепестками цветов, интерференционной картиной рентгеновских лучей, делением клеток морских ежей, равновесными конфигурациями кристаллов, романскими соборами, снежинками, музыкой, теорией относительности...". Слово «симметрия» имеет двойственное толкование. В одном смысле симметричное означает нечто весьма пропорциональное, сбалансированное; симметрия показывает тот способ согласования многих частей, с помощью которого они объединяются в целое. Второй смысл этого слова - равновесие. Еще Аристотель говорил о симметрии как о таком состоянии, которое характеризуется соотношением крайностей. Из этого высказывания следует, что Аристотель, пожалуй, был ближе всех к открытию одной из самых фундаментальных закономерностей Природы - закономерности о ее двойственности. Характерно, что к наиболее интересным результатам наука приходила именно тогда, когда устанавливались факты нарушения симметрии. Следствия, вытекающие из принципа симметрии, интенсивно разрабатывались физиками в прошлом веке и привели к ряду важных результатов. Такими следствиями законов симметрии являются, прежде всего, законы сохранения классической физики. В настоящее время в естествознании преобладают определения категорий симметрии и асимметрии на основании перечисления определенных признаков. Например, симметрия определяется как совокупность свойств: порядка, однородности, соразмерности, гармоничности. Все признаки симметрии во многих ее определениях рассматриваются равноправными, одинаково существенными, и в отдельных конкретных случаях, при установлении симметрии какого-то явления, можно пользоваться любым из них. Так, в одних случаях симметрия - это однородность, в других - соразмерность и т. д. То же самое можно сказать и о существующих в частных науках определениях асимметрии. ЗНАЧЕНИЕ СИММЕТРИИ В ПОЗНАНИИ ПРИРОДЫ Идея симметрии часто являлась отправным пунктом в гипотезах и теориях ученых прошлого. Вносимая симметрией упорядоченность проявляется, прежде всего, в ограничении многообразия возможных структур, в сокращении числа возможных вариантов. В качестве важного физического примера можно привести факт существования определяемых симметрией ограничений разнообразия структур молекул и кристаллов. Поясним эту мысль на следующем примере. Допустим, что в некоторой отдаленной галактике обитают высокоразвитые существа, увлекающиеся среди прочих занятий также играми. Мы можем ничего не знать о вкусах этих существ, о строении их тела и особенностях психики. Однако достоверно, что их игральные кости имеют одну из пяти форм - тетраэдр, куб, октаэдр, додекаэдр, икосаэдр. Всякая иная форма игральной кости в принципе исключена, поскольку требование равновероятности выпадения при игре любой грани предопределяет использование формы правильного многогранника, а таких форм только пять. Идея симметрии часто служила ученым путеводной нитью при рассмотрении проблем мироздания. Наблюдая хаотическую россыпь звезд на ночном небе, мы понимаем, что за внешним хаосом скрываются вполне симметричные спиральные структуры галактик, а в них - симметричные структуры планетных систем. Симметрия внешней формы кристалла является следствием ее внутренней симметрии - упорядоченного взаимного расположения в пространстве атомов (молекул). Иначе говоря, симметрия кристалла связана с существованием пространственной решетки из атомов, так называемой кристаллической решетки. Согласно современной точке зрения, наиболее фундаментальные законы природы носят характер запретов. Они определяют, что может, а что не может происходить в природе. Так, законы сохранения в физике элементарных частиц являются законами запрета. Они запрещают любое явление, при котором изменялась бы "сохраняющаяся величина", являющаяся собственной «абсолютной» константой (собственным значением) соответствующего объекта и характеризующая его «вес» в системе других объектов. И эти значения являются абсолютными до тех пор, пока такой объект существует. В современной науке все законы сохранения рассматриваются именно как законы запрета. Так, в мире элементарных частиц многие законы сохранения получены как правила, запрещающие те явления, которые никогда не наблюдаются в экспериментах. Видный советский ученый академик В. И. Вернадский писал в 1927 году: "Новым в науке явилось не выявление принципа симметрии, а выявление его всеобщности". Действительно, всеобщность симметрии поразительна. Симметрия устанавливает внутренние связи между объектами и явлениями, которые внешне никак не связаны. Всеобщность симметрии не только в том, что она обнаруживается в разнообразных объектах и явлениях. Всеобщим является сам принцип симметрии, без которого по сути дела нельзя рассмотреть ни одной фундаментальной проблемы, будь то проблема жизни или проблема контактов с внеземными цивилизациями. Принципы симметрии лежат в основе теории относительности, квантовой механики, физики твердого тела, атомной и ядерной физики, физики элементарных частиц. Эти принципы наиболее ярко выражаются в свойствах инвариантности законов природы. Речь при этом идет не только о физических законах, но и других, например, биологических. Примером биологического закона сохранения может служить закон наследования. В основе его лежат инвариантность биологических свойств по отношению к переходу от одного поколения к другому. Вполне очевидно, что без законов сохранения (физических, биологических и прочих) наш мир попросту не смог бы существовать.

Следует выделить аспекты, без которых симметрия невозможна:

1) объект - носитель симметрии; в роли симметричных объектов могут выступать вещи, процессы, геометрические фигуры, математические выражения, живые организмы и т.д.

2) некоторые признаки - величины, свойства, отношения, процессы, явления - объекта, которые при преобразованиях симметрии остаются неизменными; их называют инвариантными или инвариантами.

3)изменения (объекта), которые оставляют объект тождественным самому себе по инвариантным признакам; такие изменения называются преобразованиями симметрии;

4) свойство объекта превращаться по выделенным признакам в самого себя после соответствующих его изменений.

Важно подчеркнуть, что инвариант вторичен по отношению к изменению; покой относителен, движение абсолютно.

Таким образом, симметрия выражает сохранение чего-то при каких-то изменениях или сохранение чего-то несмотря на изменение. Симметрия предполагает неизменность не только самого объекта, но и каких-либо его свойств по отношению к преобразованиям, выполненным над объектом. Неизменность тех или иных объектов может наблюдаться по отношению к разнообразным операциям - к поворотам, переносам, взаимной замене частей, отражениям и т.д. В связи с этим выделяют разные типы симметрии.

ПОВОРОТНАЯ СИММЕТРИЯ. Говорят, что объект обладает поворотной симметрией, если он совмещается сам с собой при повороте на угол 2?/n, где n может равняться 2, 3, 4 и т.д. до бесконечности. Ось симметрии называется ось осью n-го порядка.

ПЕРЕНОСНАЯ (ТРАНСЛЯЦИОННАЯ) СИММЕТРИЯ . О такой симметрии говорят тогда, когда при переносе фигуры вдоль прямой на какое-то расстояние а либо расстояние, кратное этой величине, она совмещается сама с собой.
Прямая, вдоль которой производится перенос, называется осью переноса, а расстояние а - элементарным переносом или периодом. С данным типом симметрии связано понятие периодических структур или решеток, которые могут быть и плоскими, и пространственными.

Симме́три́я (др.-гр. συμμετρία – симметрия) – сохранение свойств расположения элементов фигуры относительно центра или оси симметрии в неизменном состоянии при каких-либо преобразованиях.

Слово «симметрия» знакомо нам с детства. Глядя в зеркало, мы видим симметричные половинки лица, глядя на ладошки, мы тоже видим зеркально-симметричные объекты. Взяв в руку цветок ромашки, мы убеждаемся, что путём поворотов её вокруг стебелька, можно добиться совмещения разных частей цветка. Это уже другой тип симметрии: поворотный. Существует большое количество типов симметрии, но все они неизменно отвечают одному общему правилу: при некотором преобразовании симметричный объект неизменно совмещается сам с собой.

Природа не терпит точной симметрии. Всегда есть хотя бы незначительные отклонения. Так, наши руки, ноги, глаза и уши не полностью идентичны друг другу, пусть и очень похожи. И так для каждого объекта. Природа создавалась не по принципу однотипности, а по принципу согласованности, соразмерности. Именно соразмерность является древним значением слова «симметрия». Философы античности считали симметрию и порядок сущностью прекрасного. Архитекторы, художники и музыканты с древнейших времён знали и пользовались законами симметрии. И в то же время лёгкое нарушение этих законов может придать объектам неповторимый шарм и прямо-таки волшебное очарование. Так, именно лёгкой асимметрией некоторые искусствоведы объясняют красоту и магнетизм таинственной улыбки Джоконды Леонардо да Винчи.

Симметрия порождает гармонию, которая воспринимается нашим мозгом, как необходимый атрибут прекрасного. А значит, даже наше сознание живёт по законам симметричного мира.

Согласно же Вейлю, симметричным называется такой предмет, с которым можно проделать какую-то операцию, получив в итоге первоначальное состояние.

Симметрия в биологии - закономерное расположение подобных (одинаковых) частей тела или форм живого организма, совокупности живых организмов относительно центра или оси симметрии.

Симметрия в п рироде

Симметрией обладают объекты и явления живой природы. Она позволяет живым организмам лучше приспособиться к среде обитания и просто выжить.

В живой природе огромное большинство живых организмов обнаруживает различные виды симметрий (формы, подобия, относительного расположения). Причем организмы разного анатомического строения могут иметь один и тот же тип внешней симметрии.

Внешняя симметрия может выступить в качестве основания классификации организмов (сферическая, радиальная, осевая и т.д.) Микроорганизмы, живущие в условиях слабого воздействия гравитации, имеют ярко выраженную симметрию формы.

На явления симметрии в живой природе обратили внимание ещё в Древней Греции пифагорейцы в связи с развитием учения о гармонии (V век до н.э.). В XIX веке появились единичные работы, посвящённые симметрии в растительном и животном мире.

В XX веке усилиями российских учёных – В Беклемишева, В. Вернадского, В Алпатова, Г. Гаузе – было создано новое направление в учении о симметрии – биосимметрика, которое, исследуя симметрии биоструктур на молекулярном и надмолекулярном уровнях, позволяет заранее определить возможные варианты симметрии в биообъектах, строго описывать внешнюю форму и внутреннее строение любых организмов.

Симметрия у растений

Специфика строения растений и животных определяется особенностями среды обитания, к которой они приспосабливаются, особенностями их образа жизни.

Для растений характерна симметрия конуса, которая хорошо видна на примере любого дерева. У любого дерева есть основание и вершина, "верх" и "низ", выполняющие разные функции. Значимость различия верхней и нижней частей, а также направление силы тяжести определяют вертикальную ориентацию поворотной оси "древесного конуса" и плоскостей симметрии. Дерево поглощает из почвы влагу и питательные вещества за счёт корневой системы, то есть внизу, а остальные жизненно важные функции выполняются кроной, то есть наверху. Поэтому направления "вверх" и "вниз" для дерева, существенно различны. А направления в плоскости, перпендикулярной к вертикали, для дерева фактически неразличимы: по всем этим направлениям к дереву в равной мере поступают воздух, свет, и влага. В результате появляется вертикальная поворотная ось и вертикальная плоскость симметрии.

У цветковых растений в большинстве проявляется радиальная и билатеральная симметрия. Цветок считается симметричным, когда каждый околоцветник состоит из равного числа частей. Цветки, имея парные части, считаются цветками с двойной симметрией и т.д. Тройная симметрия обычна для однодольных растений, пятерная – для двудольных.

Для листьев характерна зеркальная симметрия. Эта же симметрия встречается и у цветов, однако у них зеркальная симметрия чаще выступает в сочетании с поворотной симметрией. Нередки случаи и переносной симметрии (веточки акации, рябины). Интересно, что в цветочном мире наиболее распространена поворотная симметрия 5-го порядка, которая принципиально невозможна в периодических структурах неживой природы. Этот факт академик Н. Белов объясняет тем, что ось 5-го порядка – своеобразный инструмент борьбы за существование, "страховка против окаменения, кристаллизации, первым шагом которой была бы их поимка решеткой". Действительно, живой организм не имеет кристаллического строения в том смысле, что даже отдельные его органы не обладают пространственной решеткой. Однако упорядоченные структуры в ней представлены очень широко.

Симметрия у животных

Под симметрией у животных понимают соответствие в размерах, форме и очертаниях, а также относительное расположение частей тела, находящихся на противоположных сторонах разделяющей линии.

Сферическая симметрия имеет место у радиолярий и солнечников, тела которых сферической формы, а части распределены вокруг центра сферы и отходят от неё. У таких организмов нет ни передней, ни задней, ни боковых частей тела, любая плоскость, проведённая через центр, делит животное на одинаковые половинки.

При радиальной или лучистой симметрии тело имеет форму короткого или длинного цилиндра либо сосуда с центральной осью, от которого отходят в радиальном порядке части тела. Это кишечнополостные, иглокожие, морские звёзды.

При зеркальной симметрии осей симметрии три, но симметричных сторон только одна пара. Потому что две другие стороны – брюшная и спинная – друг на друга не похожи. Этот вид симметрии характерен для большинства животных, в том числе насекомых, рыб, земноводных, рептилий, птиц, млекопитающих.

Для насекомых, рыб, птиц, животных характерно несовместимое с поворотной симметрией различие между направлениями «вперед» и «назад». Придуманный в известной сказке о докторе Айболите фантастический Тянитолкай представляется совершенно невероятным существом, поскольку у него симметричны передняя и задняя половины. Направление движения является принципиально выделенным направлением, относительно которого нет симметрии у любого насекомого, любой рыбы или птицы, любого животного. В этом направлении животное устремляется за пищей, в этом же направлении оно спасается от преследователей.

Кроме направления движения, симметрию живых существ определяет еще одно направление – направление силы тяжести. Оба направления существенны; они задают плоскость симметрии живого существа.

Билатеральная (зеркальная) симметрия – характерная симметрия всех представителей животного мира. Эта симметрия хорошо видна у бабочки; симметрия левого и правого проявляется здесь с почти математической строгостью. Можно сказать, что каждое животное (а также насекомое, рыба, птица) состоит из двух энантиоморфов – правой и левой половин. Энантиоморфами являются также парные детали, одна из которых попадает в правую, а другая в левую половину тела животного. Так, энантиоморфами являются правое и левое ухо, правый и левый глаз, правый и левый рог и т.д.

Симметрия у человека

Человеческое тело обладает билатеральной симметрией (внешний облик и строение скелета). Эта симметрия всегда являлась и является основным источником нашего эстетического восхищения хорошо сложенным человеческим телом. Тело человека построено по принципу двусторонней симметрии.

Большинство из нас рассматривает мозг как единую структуру, в действительности он разделён на две половины. Эти две части – два полушария – плотно прилегают друг к другу. В полном соответствии с общей симметрией тела человека каждое полушарие представляет собой почти точное зеркальное отображение другого

Управление основными движениями тела человека и его сенсорными функциями равномерно распределено между двумя полушариями мозга. Левое полушарие контролирует правую сторону мозга, а правое - левую сторону.

Физическая симметрия тела и мозга не означает, что правая сторона и левая равноценны во всех отношениях. Достаточно обратить внимание на действия наших рук, чтобы увидеть начальные признаки функциональной симметрии. Лишь немногие люди одинаково владеют обеими руками; большинство же имеет ведущую руку.

Типы симметрии у животных

1. центральная

2. осевая (зеркальная)

3. радиальная

4. билатеральная

5. двулучевая

6. поступательная (метамерия)

7. поступательно-вращательная

Типы симметрии

Известны всего два основных типа симметрии – вращательная и поступательная. Кроме того, встречается модификация из совмещения этих двух основных типов симметрии – вращательно-поступательная симметрия.

Вращательная симметрия. Любой организм обладает вращательной симметрией. Для вращательной симметрии существенным характерным элементом являются антимеры. Важно знать, при повороте на какой-либо градус контуры тела совпадут с исходным положением. Минимальный градус совпадения контура имеет шар, вращающийся около центра симметрии. Максимальный градус поворота 360 0 , когда при повороте на эту величину контуры тела совпадут. Если тело вращается вокруг центра симметрии, то через центр симметрии можно провести множество осей и плоскостей симметрии. Если тело вращается вокруг одной гетерополярной оси, то через эту ось можно провести столько плоскостей, сколько антимер имеет данное тело. В зависимости от этого условия говорят о вращательной симметрии определённого порядка. Например, у шестилучевых кораллов будет вращательная симметрия шестого порядка. У гребневиков две плоскости симметрии, и они имеют симметрию второго порядка. Симметрию гребневиков также называют двулучевой. Наконец, если организм имеет только одну плоскость симметрии и соответственно две антимеры, то такую симметрию называют двусторонней или билатеральной. Лучеобразно отходят тонкие иглы. Это помогает простейшим «парить» в толще воды. Шарообразны и другие представители простейших – лучевики (радиолярии) и солнечники с лучевидными отростками-псевдоподиями.

Поступательная симметрия. Для поступательной симметрии характерным элементом являются метамеры (meta – один за другим; mer – часть). В этом случае части тела расположены не зеркально друг против друга, а последовательно друг за другом вдоль главной оси тела.

Метамерия – одна из форм поступательной симметрии. Она особенно ярко выражена у кольчатых червей, длинное тело которых состоит из большого числа почти одинаковых сегментов. Этот случай сегментации называют гомономной. У членистоногих животных число сегментов может быть относительно небольшим, но каждый сегмент несколько отличается от соседних или формой, или придатками (грудные сегменты с ногами или крыльями, брюшные сегменты). Такую сегментацию называют гетерономной.

Вращательно-поступательная симметрия . Этот тип симметрии имеет ограниченное распространение в животном мире. Эта симметрия характерна тем, что при повороте на определённый угол часть тела немного проступает вперед и её размеры каждый следующий логарифмически увеличивает на определённую величину. Таким образом, происходит совмещение актов вращения и поступательного движения. Примером могут служить спиральные камерные раковины фораминифер, а также спиральные камерные раковины некоторых головоногих моллюсков. С некоторым условием к этой группе можно отнести также и некамерные спиральные раковины брюхоногих моллюсков

Зеркальная симметрия

Если стать в центре здания и слева от вас окажется то же количество этажей, колонн, окон, что и справа, значит здание симметрично. Если бы можно было перегнуть его по центральной оси, то обе половинки дома совпали бы при наложении. Такая симметрия получила название зеркальной. Этот вид симметрии весьма популярен в животном царстве, сам человек скроен по ее канонам.

Ось симметрии – это ось вращения. В этом случае у животных, как правило, отсутствует центр симметрии. Тогда вращение может происходить только вокруг оси. При этом ось чаще всего имеет разнокачественные полюса. Например, у кишечнополостных, гидры или актинии, на одном полюсе расположен рот, на другом – подошва, которой эти неподвижные животные прикреплены к субстрату. Ось симметрии может совпадать морфологически с переднезадней осью тела.

При зеркальной симметрии меняются правая и левая части предмета.

Плоскость симметрии – это плоскость, проходящая через ось симметрии, совпадающая с ней и рассекающая тело на две зеркальные половины. Эти половины, расположенные друг против друга, называют антимерами (anti – против; mer – часть). Например, у гидры плоскость симметрии должна пройти через ротовое отверстие и через подошву. Антимеры противоположных половин должны иметь равное число щупалец, расположенных вокруг рта гидры. У гидры можно провести несколько плоскостей симметрии, число которых будет кратно числу щупалец. У актиний с очень большим числом щупалец можно провести много плоскостей симметрии. У медузы с четырьмя щупальцами на колоколе число плоскостей симметрии будет ограничено числом, кратным четырём. У гребневиков только две плоскости симметрии – глоточная и щупальцевая. Наконец, у двустороннесимметричных организмов только одна плоскость и только две зеркальные антимеры – соответственно правая и левая стороны животного.

Переход от лучевой или радиальной к двусторонней или билатеральной симметрии связан с переходом от сидячего образа жизни к активному передвижению в среде. Для сидячих форм отношения со средой равноценны во всех направлениях: радиальная симметрия точно соответствует такому образу жизни. У активно перемещающихся животных передний конец тела становится биологически не равноценным остальной части туловища, происходит формирование головы, становятся различимы правая и левая сторона тела. Благодаря этому теряется радиальная симметрия, и через тело животного можно провести лишь одну плоскость симметрии, делящую тело на правую и левую стороны. Двусторонняя симметрия означает, что одна сторона тела животного представляет собой зеркальное отражение другой стороны. Такой тип организации характерен для большинства беспозвоночных, в особенности для кольчатых червей и для членистоногих – ракообразных, паукообразных, насекомых, бабочек; для позвоночных – рыб, птиц, млекопитающих. Впервые двусторонняя симметрия появляется у плоских червей, у которых передний и задний концы тела различаются между собой.

У кольчатых червей и членистоногих наблюдается ещё и метамерия – одна из форм поступательной симметрии, когда части тела располагаются последовательно друг за другом вдоль главной оси тела. Особенно ярко она выражена у кольчатых червей (дождевой червь). Кольчатые черви обязаны своим названием тому, что их тело состоит из ряда колец или сегментов (члеников). Сегментированы как внутренние органы, так и стенки тела. Так что животное состоит примерно из сотни более или менее сходных единиц - метамеров, каждая из которых содержит по одному или по паре органов каждой системы. Членики отделены друг от друга поперечными перегородками. У дождевого червя почти все членики сходны между собой. К кольчатым червям относятся полихеты – морские формы, которые свободно плавают в воде, роются в песке. На каждом сегменте их тела имеется пара боковых выступов, несущих по плотному пучку щетинок. Членистоногие получили своё название за характерные для них членистые парные придатки (как органы плавания, ходильные конечности, ротовые части). Для всех них характерно сегментированное тело. Каждое членистоногое имеет строго определённое число сегментов, которое остаётся неизменным в течение всей жизни. Зеркальная симметрия хорошо видна у бабочки; симметрия левого и правого проявляется здесь с почти математической строгостью. Можно сказать, что каждое животное, насекомое, рыба, птица состоит из двух энантиоморфов – правой и левой половин. Так, энантиоморфами являются правое и левое ухо, правый и левый глаз, правый и левый рог и т.д.

Радиальная симметрия

Радиальная симметрия – форма симметрии, при которой тело (или фигура) совпадает само с собой при вращении объекта вокруг определённой точки или прямой. Часто эта точка совпадает с центром симметрии объекта, то есть той точкой, в которой пересекается бесконечное количество осей двусторонней симметрии.

В биологии о радиальной симметрии говорят, когда через трёхмерное существо проходят одна или более осей симметрии. При этом радиальносимметричные животные могут и не иметь плоскостей симметрии. Так, у сифонофоры Velella имеется ось симметрии второго порядка и нет плоскостей симметрии.

Обычно через ось симметрии проходят две или более плоскости симметрии. Эти плоскости пересекаются по прямой – оси симметрии. Если животное будет вращаться вокруг этой оси на определённый градус, то оно будет отображаться само на себе (совпадать само с собой).
Таких осей симметрии может быть несколько (полиаксонная симметрия) или одна (монаксонная симметрия). Полиаксонная симметрия распространена среди протистов (например, радиолярий).

Как правило, у многоклеточных животных два конца (полюса) единственной оси симметрии неравноценны (например, у медуз на одном полюсе (оральном) находится рот, а на противоположном (аборальном) – верхушка колокола. Такая симметрия (вариант радиальной симметрии) в сравнительной анатомии называется одноосно-гетеропольной. В двухмерной проекции радиальная симметрия может сохраняться, если ось симметрии направлена перпендикулярно к проекционной плоскости. Иными словами, сохранение радиальной симметрии зависит от угла наблюдения.
Радиальная симметрия характерна для многих стрекающих, а также для большинства иглокожих. Среди них встречается так называемая пентасимметрия, базирующаяся на пяти плоскостях симметрии. У иглокожих радиальная симметрия вторична: их личинки двустороннесимметричны, а у взрослых животных наружная радиальная симметрия нарушается наличием мадрепоровой пластинки.

Кроме типичной радиальной симметрии существует двулучевая радиальная симметрия (две плоскости симметрии, к примеру, у гребневиков). Если плоскость симметрии только одна, то симметрия билатеральная (такую симметрию имеют двусторонне-симметричные).

У цветковых растений часто встречаются радиальносимметричные цветки: 3 плоскости симметрии (водокрас лягушачий), 4 плоскости симметрии (лапчатка прямая), 5 плоскостей симметрии (колокольчик), 6 плоскостей симметрии (безвременник). Цветки с радиальной симметрией называются актиноморфные, цветки с билатеральной симметрией – зигоморфные.

Если окружающая животное среда со всех сторон более или менее однородна и животное равномерно соприкасается с нею всеми частями своей поверхности, то форма тела обычно шарообразна, а повторяющиеся части располагаются по радиальным направлениям. Шарообразны многие радиолярии, входящие в состав так называемого планктона, т.е. совокупности организмов, взвешенных в толще воды и неспособных к активному плаванию; шарообразные камеры имеют немногочисленные планктонные представители фораминифер (простейшие, обитатели морей, морские раковинные амёбы). Фораминиферы заключены в раковинки разнообразной, причудливой формы. Шаровидное тело солнечников посылает во все стороны многочисленные тонкие, нитевидные радиально расположенные псевдоподии, тело лишено минерального скелета. Такой тип симметрии называют равноосным, так как он характеризуется наличием многих одинаковых осей симметрии.

Равноосный и полисимметрический типы встречаются преимущественно среди низкоорганизованных и малодифференцированных животных. Если вокруг продольной оси располагается 4 одинаковых органа, то радиальная симметрия в этом случае называется четырёхлучевой. Если таких органов шесть, то и порядок симметрии будет шестилучевым, и т.д. Так как количество таких органов ограничено (часто 2,4,8 или кратное от 6), то и плоскостей симметрии можно провести всегда несколько, соответствующее количеству этих органов. Плоскости делят тело животного на одинаковые участки с повторяющимися органами. В этом заключается отличие радиальной симметрии от полисимметрического типа. Радиальная симметрия характерна для малоподвижных и прикрепленных форм. Экологическое значение лучевой симметрии понятно: сидячее животное окружено со всех боковых сторон одинаковой средою и должно вступать во взаимоотношения с этой средой при помощи одинаковых, повторяющихся в радиальных направлениях органов. Именно сидячий образ жизни способствует развитию лучистой симметрии.

Поворотная симметрия

В мире растений «популярна» поворотная симметрия. Возьмите в руку цветок ромашки. Совмещение разных частей цветка происходит, если их повернуть вокруг стебелька.

Очень часто флора и фауна одалживают внешние формы друг у друга. Морские звезды, ведущие растительный образ жизни, обладают поворотной симметрией, а листья - зеркальной.

Прикованные к постоянному месту растения четко различают только верх и низ, а все остальные направления для них более или менее одинаковы. Естественно, что их внешний вид подчинен поворотной симметрии. Для животных очень важно, что находится впереди и что сзади, только «лево» и «право» для них остаются равноправными. В этом случае господствует зеркальная симметрия. Любопытно, что животные, меняющие подвижную жизнь на неподвижную и потом вновь возвращающиеся к подвижной жизни, соответственное число раз переходят от одного вида симметрии к другому, как это случилось, например, с иглокожими (морскими звездами и др.).

Винтовая или спиральная симметрия

Винтовая симметрия есть симметрия относительно комбинации двух преобразований – поворота и переноса вдоль оси поворота, т.е. идёт перемещение вдоль оси винта и вокруг оси винта. Встречаются левые и правые винты.

Примерами природных винтов являются: бивень нарвала (небольшого китообразного, обитающего в северных морях) – левый винт; раковина улитки – правый винт; рога памирского барана – энантиоморфы (один рог закручен по левой, а другой по правой спирали). Спиральная симметрия не бывает идеальной, например, раковина у моллюсков сужается или расширяется на конце.

Хотя внешняя спиральная симметрия у многоклеточных животных встречается редко, зато спиральную структуру имеют многие важные молекулы, из которых построены живые организмы – белки, дезоксирибонуклеиновые кислоты – ДНК. Подлинным царством природных винтов является мир «живых молекул» – молекул, играющих принципиально важную роль в жизненных процессах. К таким молекулам относятся, прежде всего, молекулы белков. В человеческом теле насчитывают до 10 типов белков. Все части тела, включая кости, кровь, мышцы, сухожилия, волосы, содержат белки. Молекула белка представляет собой цепочку, составленную из отдельных блоков, и закрученную по правой спирали. Её называют альфа-спиралью. Молекулы волокон сухожилий представляют собой тройные альфа-спирали. Скрученные многократно друг с другом альфа-спирали образуют молекулярные винты, которые обнаруживаются в волосах, рогах, копытах. Молекула ДНК имеет структуру двойной правой спирали, открытой американскими учёными Уотсоном и Криком. Двойная спираль молекулы ДНК есть главный природный винт.

Заключение

Законам симметрии подчиняются все формы на свете. Даже «вечно свободные» облака обладают симметрией, хотя и искаженной. Замирая на голубом небе, они напоминают медленно движущихся в морской воде медуз, явно тяготея к поворотной симметрии, а потом, гонимые поднявшимся ветерком, меняют симметрию на зеркальную.

Симметрия, проявляясь в самых различных объектах материального мира, несомненно, отражает наиболее общие, наиболее фундаментальные его свойства. Поэтому исследование симметрии разнообразных природных объектов и сопоставление его результатов является удобным и надежным инструментом познания основных закономерностей существования материи.

Симметрия - это и есть равенство в широком смысле этого слова. Значит, если имеет место симметрия, то чего-то не произойдет и, значит, что-то обязательно останется неизменным, сохранится.

Источники

1. Урманцев Ю. А. “Симметрия природы и природа симметрии”. Москва, Мысль, 1974г.

2. В.И. Вернадский. Химическое строение биосферы Земли и ее окружения. М., 1965.

3. http://www.worldnatures.ru

4. http://otherreferats

Симметрия всегда была меткой совершенства и красоты в классических греческих иллюстрациях и эстетике. Естественная симметрия природы, в частности, была предметом исследования философов, астрономов, математиков, художников, архитекторов и физиков, таких как Леонардо Да Винчи. Мы видим это совершенство ежесекундно, хотя и не всегда замечаем. Вот 10 красивых примеров симметрии, частью которой являемся и мы сами.

Брокколи Романеско

Этот вид капусты известен своей фрактальной симметрией. Это сложный образец, где объект сформирован в одной и то же геометрической фигуре. В этом случае вся брокколи составлена из одной и той же логарифмической спирали. Брокколи Романеско не только красива, но также и очень полезна, богата каротиноидами, витаминами C и K, а по вкусу подобна цветной капусте.

Медовые соты

На протяжении тысяч лет пчелы инстинктивно производили шестиугольники идеальной формы. Многие ученые верят, что пчелы производят соты в этой форме, чтобы сохранить большую часть меда при использовании наименьшего количества воска. Другие не так уверены и полагают, что это - естественное формирование, а воск образуется, когда пчелы создают свое жилище.

Подсолнухи

Эти дети солнца имеют сразу две формы симметрии – радиальная симметрия, и числовая симметрия последовательности Фибоначчи. Последовательность Фибоначчи проявляется в числе спиралей из семян цветка.

Раковина Наутилуса

Еще одна естественная последовательность Фибоначчи проявляется в раковине Наутилуса. Оболочка Наутилуса растет по “спирали Fibonacci” в пропорциональной форме, что позволяет наутилусу внутри сохранять одну и ту же форму на всей продолжительность жизни.

Животные

Животные, как и люди, симметричны с двух сторон. Это означает, что есть осевая линия, где они могут быть разделены на две идентичных половины.

Паутина паука

Пауки создают совершенные круговые сети. Сеть паутины состоит из равно отдаленных радиальных уровней, которые распространяются из центра по спирали, переплетаясь друг с другом при максимальной прочностью.

Круги на полях.

Круги на полях происходят вовсе не "естественно", однако это довольно удивительно симметрия, которой могут достигнуть люди. Многие полагали, что круги на полях являются результатом посещения НЛО, но в итоге оказалось, что это дело рук человека. Круги на полях демонстрируют различные формы симметрии, включая спирали Фибоначчи и фракталы.

Снежинки

Вам определенно понадобится микроскоп, чтобы засвидетельствовать красивую радиальную симметрию в этих миниатюрных шестисторонних кристаллах. Эта симметрия сформирована в процессе кристаллизации в молекулах воды, которые формируют снежинку. Когда молекулы воды замерзают, они создают водородные связи с гексагональными формами.

Галактика Млечный Путь

Земля не единственное место, которое придерживаются естественной симметрии и математики. Галактика Млечного пути - поразительный пример зеркальной симметрии и составлена из двух главных рукавов, известных как Персей и Щит Центавра. У каждого из этих рукавов есть логарифмическая спираль, подобная оболочке наутилуса, с последовательностью Фибоначчи, которая начинается в центре галактики и расширяется.

Лунно-Солнечная симметрия

Солнце намного больше, чем луна, фактически в четыреста раз больше. Тем не менее, явления солнечного затмения происходят каждые пять лет, когда лунный диск полностью перекрывает солнечный свет. Симметрия происходит, потому что Солнце в четыреста раз дальше от Земли, чем Луна.

По сути, симметрия заложена в самой природе. Математическое и логарифмическое совершенство создает красоту вокруг и внутри нас.

«СИММЕТРИЯ - СИМВОЛ КРАСОТЫ, ГАРМОНИИ И СОВЕРШЕНСТВА»

Симметрия (др.-греч. — «соразмерность») — закономерное расположение подобных (одинаковых) частей тела или форм живого организма, совокупности живых организмов относительно центра или оси симметрии. При этом подразумевается, что соразмерность - часть гармонии, правильного сочетания частей целого.

Гармония - греческое слово, обозначающее «согласованность, соразмерность, единство частей и целого». Внешне гармония может проявляться в мелодии, ритме, симметрии и пропорциональности. Во всем царит гармонии закон, И в мире всё суть ритм, аккорд и тон. Дж. Драйден

Совершенство - высшая степень, предел какого-либо положительного качества, способности, или мастерства.

«Свобода есть основной внутренний признак каждого существа, сотворенного по образу и подобию Божьему; в этом признаке заключено абсолютное совершенство плана творения». Н. А. Бердяев Симметрия - основополагающий принцип устройства мира.

Симметрия - распространенное явление, ее всеобщность служит эффективным методом познания природы. Симметрия в природе нужна, чтобы сохранять устойчивость. Внутри внешней симметрии лежит внутренняя симметрия построения, гарантирующая равновесие.

Симметрия - проявление стремления материи к надежности и прочности.

Симметричные формы обеспечивают повторяемость удачных форм, поэтому более устойчивы к различным воздействиям. Симметрия многообразна.

В природе и, в частности, в живой природе симметрия не абсолютна и всегда содержит некоторую степень асимметрии. Асимметрия — (греч. α- — «без» и «симметрия») — отсутствие симметрии.

Симметрия в живой природе

Симметрия, как и пропорция, почиталась необходимым условием гармонии и красоты.

Внимательно приглядевшись к природе, можно увидеть общее даже в самых незначительных вещах и деталях, найти проявления симметрии. Форма листа дерева не является случайной: она строго закономерна. Листок как бы склеен из двух более или менее одинаковых половинок, одна из которых расположена зеркально относительно другой. Симметрия листка упорно повторяется, будь то гусеница, бабочка, жучок и т.п.

Существует очень сложная многоуровневая классификация типов симметрий. Здесь мы не будем рассматривать эти сложности классификации, отметим лишь принципиальные положения и вспомним простейшие примеры.

На самом верхнем уровне различают три типа симметрии: структурную, динамическую и геометрическую. Каждый из этих типов симметрии на следующем уровне делится на классическую и неклассическую.

Ниже располагаются следующие иерархические уровни. Графическое изображение всех уровней подчинения даёт разветвлённую дендрограмму.

В быту мы чаще всего сталкиваемся с так называемой зеркальной симметрией. Это такое строение объектов, когда их можно разделить на правую и левую или верхнюю и нижнюю половины воображаемой осью, называемой осью зеркальной симметрии. При этом половины, находящиеся по разные стороны оси - идентичны друг другу.

Отражение в плоскости симметрии . Отражение - это наиболее известная и чаще других встречающаяся в природе разновидность симметрии. Зеркало в точности воспроизводит то, что оно "видит", но рассмотренный порядок является обращенным: правая рука у вашего двойника в действительности окажется левой, так как пальцы расположены на ней в обратном порядке. Зеркальную симметрию можно обнаружить повсюду: в листьях и цветах растений. Более того, зеркальная симметрия присуща телам почти всех живых существ, и такое совпадение отнюдь не случайно. Зеркальной симметрией обладает все, допускающее разбиение на две зеркально равные половинки. Каждая из половинок служит зеркальным отражением другой, а разделяющая их плоскость называется плоскостью зеркального отражения, или просто зеркальной плоскостью.

Поворотная симметрия. Внешний вид узора не изменится, если его повернуть на некоторый угол вокруг оси. Симметрия, возникающая при этом, называется поворотной симметрией. Листья и цветы многих растений обнаруживают радиальную симметрию. Это такая симметрия, при которой лист или цветок, поворачиваясь вокруг оси симметрии, переходит в себя. На поперечных сечениях тканей, образующих корень или стебель растения, отчетливо бывает видна радиальная симметрия. Соцветия многих цветков также обладают радиальной симметрией.

Радиально-лучевой симметрией обладают цветы, грибы, деревья. Здесь можно отметить, что на не сорванных цветах и грибах, растущих деревьях плоскости симметрии ориентированы всегда вертикально. Определяя пространственную организацию живых организмов, прямой угол организует жизнь силами гравитации. Биосфера (пласт бытия живых существ) ортогональна вертикальной линии земного тяготения. Вертикальные стебли растений, стволы деревьев, горизонтальные поверхности водных пространств и в целом земная кора составляют прямой угол. Прямой угол, лежащий в основе треугольника, правит пространством симметрии подобий, а подобие, как уже говорилось, - есть цель жизни. И сама природа, и первородная часть человека находятся во власти геометрии, подчинены симметрии и как сущности, и как символы. Как бы ни были выстроены объекты природы, каждый имеет свой основной признак, который отображен формой, будь то яблоко, зерно ржи или человек.

Примеры радиальной симметрии.

Простейший вид симметрии зеркальная (осевая), возникающая при вращении фигуры вокруг оси симметрии.

В природе зеркальная симметрия характерна для растений и животных, которые произрастают или двигаются параллельно поверхности Земли. Например, крылья и туловище бабочки можно назвать эталоном зеркальной симметрии.

Осевая симметрия это результат поворота абсолютно одинаковых элементов вокруг общего центра. При этом они могут располагаться под любым углом и с различной частотой. Главное, чтобы элементы вращались вокруг единого центра. В природе, примеры осевой симметрии чаще всего можно найти среди растений и животных, которые растут или перемещаются перпендикулярно к поверхности Земли.

Также существует винтовая симметрия .

Трансляцию можно комбинировать с отражением или поворотом, при этом возникают новые операции симметрии. Поворот на определенное число градусов, сопровождаемый трансляцией на расстояние вдоль оси поворота, порождает винтовую симметрию - симметрию винтовой лестницы. Пример винтовой симметрии - расположение листьев на стебле многих растений. Если рассматривать расположение листьев на ветке дерева мы заметим, что лист отстоит от другого, но и повернут вокруг оси ствола.

Листья располагаются на стволе по винтовой линии, чтобы не заслонять друг от друга солнечный свет. Головка подсолнечника имеет отростки, расположенные по геометрическим спиралям, раскручивающимся от центра наружу. Самые молодые члены спирали находятся в центре. В таких системах можно заметить два семейства спиралей, раскручивающихся в противоположные стороны и пересекающихся под углами, близкими к прямым. Но какими бы интересными и привлекательными ни были проявления симметрии в мире растений, там еще много тайн, управляющих процессами развития. Вслед за Гете, который говорил о стремлении природы к спирали, можно предположить, что движение это осуществляется по логарифмической спирали, начиная всякий раз с центральной, неподвижной точки и сочетая поступательное движение (растяжение) с поворотом вращения.

На основании этого можно сформулировать в несколько упрощенном и схематизированном виде (из двух пунктов) общий закон симметрии, ярко и повсеместно проявляющийся в природе:

1. Все, что растет или движется по вертикали, т.е. вверх или вниз относительно земной поверхности, подчиняется радиально-лучевой симметрии в виде веера пересекающихся плоскостей симметрии. Листья и цветы многих растений обнаруживают радиальную симметрию. Это такая симметрия, при которой лист или цветок, поворачиваясь вокруг оси симметрии, переходит в себя. На поперечных сечениях тканей, образующих корень или стебель растения, отчетливо бывает видна радиальная симметрия. Соцветия многих цветков также обладают радиальной симметрией.

2. Все то, что растет и движется горизонтально или наклонно по отношению к земной поверхности, подчиняется билатеральной симметрии, симметрии листка.

Этому всеобщему закону из двух постулатов подчиняются не только цветы, животные, легкоподвижные жидкости и газы, но и твердые, неподатливые камни. Этот закон влияет на изменчивые формы облаков. В безветренный день они имеют куполовидную форму с более или менее ясно выраженной радиально-лучевой симметрией. Влияние универсального закона симметрии является по сути дела чисто внешним, грубым, налагающим свою печать только на наружную форму природных тел. Внутреннее их строение и детали ускользают из-под его власти.

Симметрия основана на подобии. Она означает такое соотношение между элементами, фигурами, когда они повторяют и уравновешивают друг друга.

Симметрия подобия. Еще один тип симметрии - симметрия подобия, связанная с одновременным увеличением или уменьшением подобных частей фигуры и расстояний между ними. Примером такого рода симметрии служит матрешка. Очень широко распространена такая симметрия в живой природе. Ее демонстрируют все растущие организмы.

Основой эволюции живой материи является симметрия подобия. Рассмотрим цветок розы или кочан капусты. Важную роль в геометрии всех этих природных тел играет подобие их сходных частей. Такие части, конечно, связаны между собой каким-то общим, еще не известным нам геометрическим законом, позволяющим выводить их друг из друга. Симметрия подобия, осуществляющаяся в пространстве и во времени, повсеместно проявляется в природе на всем, что растет. А ведь именно к растущим формам относятся бесчисленные фигуры растений, животных и кристаллов. Форма древесного ствола - коническая, сильно вытянутая. Ветви обычно располагаются вокруг ствола по винтовой линии. Это не простая винтовая линия: она постепенно сужается к вершине. Да и сами ветви уменьшаются по мере приближения к вершине дерева. Следовательно, здесь мы имеем дело с винтовой осью симметрии подобия.

Живая природа в любых ее проявлениях обнаруживает одну и ту же цель, один и тот же смысл жизни: всякий живой предмет повторяет себя в себе подобном. Главной задачей жизни является жизнь, а доступная форма бытия заключается в существовании отдельных целостных организмов. И не только примитивные организации, но и сложные космические системы, такие как человек, демонстрируют поразительную способность буквально повторять из поколения в поколение одни и те же формы, одни и те же скульптуры, черты характера, те же жесты, манеры.

Природа обнаруживает подобие как свою глобальную генетическую программу. Ключ в изменении тоже заключается в подобии. Подобие правит живой природой в целом. Геометрическое подобие - общий принцип пространственной организации живых структур. Лист клена подобен листу клена, березы - листу березы. Геометрическое подобие пронизывает все ветви древа жизни. Какие бы метаморфозы ни претерпевала в процессе роста в дальнейшем живая клетка, принадлежащая целостному организму и выполняющая функцию его воспроизведения в новый, особенный, единичный объект бытия, она является точкой "начала", которая в итоге деления окажется преобразована в объект, подобный первоначальному. Этим объединяются все виды живых структур, по этой причине и существуют стереотипы жизни: человек, кошка, стрекоза, дождевой червь. Они бесконечно интерпретируются и варьируются механизмами деления, но остаются теми же стереотипами организации, формы и поведения.

Для живых организмов симметричное расположение частей органов тела помогает сохранять им равновесие при передвижении и функционировании, обеспечивает их жизнестойкость и лучшее приспособление к окружающему миру, что справедливо и в растительном мире. Например, ствол ели или сосны чаще всего прямой и ветви равномерно расположены относительно ствола. Дерево, развиваясь в условиях действия силы тяжести, достигает устойчивого положения. К вершине дерева ветви его становятся меньше в размерах - оно приобретает форму конуса, поскольку на нижние ветви, как и на верхние, должен падать свет. Кроме того, центр тяжести должен быть как можно ниже, от этого зависит устойчивость дерева. Законы естественного отбора и всемирного тяготения способствовали тому, что дерево не только эстетически красиво, но устроено целесообразно.

Получается, что симметрия живых организмов связана с симметрией законов природы. На житейском уровне, когда мы видим проявление симметрии в живой и неживой природе, то невольно испытываем чувство удовлетворения тем всеобщим, как нам кажется, порядком, который царит в природе.

По мере упорядочения живых организмов, их усложнения в ходе развития жизни асимметрия все больше и больше превалирует над симметрией, вытесняя ее из биохимических и физиологических процессов. Однако и здесь имеет место динамический процесс: симметрия и асимметрия в функционировании живых организмов тесно связаны. Внешне человек и животные симметричны, однако их внутреннее строение существенно асимметрично. Если у низших биологических объектов, например низших растений, размножение идет симметрично, то у высших имеет место явная асимметрия, например разделение полов, где каждый пол вносит в процесс самовоспроизведения свойственную только ему генетическую информацию. Так, устойчивое сохранение наследственности есть проявление в известном смысле симметрии, а в изменчивости проявляется асимметрия. В целом же глубокая внутренняя связь симметрии и асимметрии в живой природе обусловливает ее возникновение, существование и развитие.

Вселенная есть асимметричное целое, и жизнь в таком виде, в каком она представляется, должна быть функцией асимметрии Вселенной и вытекающих отсюда следствий. В отличие от молекул неживой природы молекулы органических веществ имеют ярко выраженный асимметричный характер (хиральность). Придавая большое значение асимметрии живого вещества, Пастер считал ее именно той единственной, четко разграничивающей линией, которую в настоящее время можно провести между живой и неживой природой, т.е. тем, что отличает живое вещество от неживого. Современная наука доказала, что в живых организмах, как и в кристаллах, изменениям в строении отвечают изменения свойств.

Предполагают, что возникшая асимметрия произошла скачком в результате Большого Биологического Взрыва (по аналогии с Большим Взрывом, в результате которого образовалась Вселенная) под действием радиации, температуры, электромагнитных полей и т.д. и нашла свое отражение в генах живых организмов. Этот процесс, по существу, также является процессом самоорганизации

Осевая симметрия и понятие совершенства

Осевая симметрия присуща всем формам в природе и является одним из основополагающих принципов красоты. С древнейших времен человек пытался

постигнуть смысл совершенства. Впервые обосновали это понятие художники, философы и математики Древней Греции. Да и само слово "симметрия" было придумано ими. Обозначает оно пропорциональность, гармоничность и тождественность частей целого. Древнегреческий мыслитель Платон утверждал, что прекрасным может быть только тот объект, который симметричен и соразмерен. И действительно, «радуют глаз» те явления и формы, которые имеют пропорциональность и завершенность. Их мы называем правильными.

Осевая симметрия как понятие

Симметрия в мире живых существ проявляется в закономерном расположении одинаковых частей тела относительно центра или оси. Чаще в

природе встречается осевая симметрия. Она обуславливает не только общее строение организма, но и возможности его последующего развития. Геометрические формы и пропорции живых существ формирует «осевая симметрия». Определениеее формулируется следующим образом: это свойство объектов совмещаться при различных преобразованиях. Древние считали, что принципом симметричности в наиболее полном объеме обладает сфера. Эту форму они полагали гармоничной и совершенной.

Осевая симметрия в живой природе

Если взглянуть на любое живое существо, сразу бросается в глаза симметричность устройства организма. Человек: две руки, две ноги, два глаза, два уха и так далее. Каждому виду животных присущ характерный окрас. Если в расцветке фигурирует рисунок, то, как правило, он зеркально дублируется с обеих сторон. Это означает, что существует некая линия, по которой животные и люди могут быть визуально поделены на две идентичные половинки, то есть в основе их геометрического устройства лежит осевая симметрия. Любой живой организм природа создает не хаотично и бессмысленно, а согласно общим законам мироустройства, ведь во Вселенной ничто не имеет чисто эстетического, декоративного назначения. Наличие различных форм также обусловлено закономерной необходимостью.

Осевая симметрия в неживой природе

В мире нас повсюду окружают такие явления и предметы, как: тайфун, радуга, капля, листья, цветы и т.д. Их зеркальная, радиальная, центральная, осевая симметрия - очевидны. В значительной степени она обусловлена явлением гравитации. Часто под понятием симметрия понимается регулярность смены каких-либо явлений: день и ночь, зима, весна, лето и осень и так далее. Практически, это свойство существует везде, где наблюдается упорядоченность. Да и сами законы природы - биологические, химические, генетические, астрономические, подчинены общим для нас всех принципам симметрии, поскольку имеют завидную системность. Таким образом, сбалансированность, тождественность как принцип имеет всеобщий масштаб. Осевая симметрия в природе - это один из «краеугольных» законов, на котором базируется мироздание в целом.